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Typical entanglement in multi-qubit systems
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Quantum entanglement and its paradoxical properties hold the key to an information process-
ing revolution. Much attention has focused recently on the challenging problem of characterizing
entanglement. Entanglement for a two qubit system is reasonably well understood, however, the na-
ture and properties of multiple qubit systems are largely unexplored. Motivated by the importance
of such systems in quantum computing, we show that typical pure states of N qubits are highly
entangled but have decreasing amounts of pairwise entanglement (measured using the Wootter’s
concurrence formula) as N increases. Above six qubits very few states have any pairwise entangle-
ment, and generally, for a typical pure state of N qubits there is a sharp cut-off where its subsystems
of size m become PPT (positive partial transpose i.e., separable or only bound entangled) around
N & 2m + 3, based on numerical analysis up to N = 13.

PACS numbers: 03.67.-a, 03.65.Ud

Quantum entanglement is a key prediction of quantum
mechanics and is generally thought to be one of the cru-
cial resources required in quantum information process-
ing. Known quantum information applications include
quantum computation [1, 2], quantum communication
[3], quantum cryptography [4, 5, 6, 7], and quantum tele-
portation [8, 9, 10]. The properties of entangled states
potentially used in these applications are still poorly un-
derstood. General two qubit entangled states have been
well characterized, and a number of analytical measures
of entanglement are known [11, 12]. However, forN qubit
systems (with N > 2), few such measures can be cal-
culated even for pure states. Despite these difficulties,
arrays of qubits have been the focus of recent attention
[13, 14, 15, 16], e.g., Raussendorf and Briegel [17] pro-
pose an array of highly entangled qubits for quantum
computation.

In this letter we consider the average, or typical proper-
ties of N qubit pure states. A subsystem of an entangled
pure state is in general a mixed state, thus we also con-
sider the entanglement of mixed states derived from these
pure states. Currently, a variety of measures are known
for quantifying the degree of entanglement, including the
entanglement of distillation [18], the relative entropy of
entanglement [19], the entanglement of formation [11, 18]
and the negativity [12]. Using |0〉 and |1〉 for the two
eigenstates of a spin− 1

2 system or equivalent that encodes
a qubit, and |00〉 as a shorthand for |0〉A|0〉B, a state of
two qubits A and B, the four Bell states (|00〉±|11〉)/

√
2

and (|01〉 ± |10〉)/
√

2 have the maximum possible entan-
glement. Most entanglement measures assign a value of
1 to a Bell state, and 0 to all separable states.

For our purposes, it is convenient to use the tangle
τ (squared concurrence) as our entanglement measure
when considering two or three qubits. The tangle is an
entanglement monotone from which the entanglement of
formation can be calculated [11, 20]. For a pure state of
two qubits, τ = 4det|ρA|, where ρA is the reduced density
matrix obtained when qubit B has been traced over (or

vice versa permuting A and B). For a mixed state ρ of
two qubits, the concurrence C = τ 1/2 is given [11] by

C = max(λ1 − λ2 − λ3 − λ4, 0), (1)

where the λi are the square roots of the eigenvalues
of ρρ̃ = ρ σAy ⊗ σBy ρ∗σAy ⊗ σBy , and ρ∗ denotes the
complex conjugation of ρ in the computational basis
{|00〉, |01〉, |10〉, |11〉}. The entanglement of formation
Ef = h(1

2 + 1
2

√
1−C2), where h(x) is the binary en-

tropy function, h(x) = −x log2(x)− (1− x) log2(1− x).
A general pure state of two qubits can be written [21]

|Ψ2〉 = eiχ0 cos θ0|00〉
+ eiχ1 sin θ0 cos θ1|01〉
+ eiχ2 sin θ0 sin θ1 cos θ2|10〉
+ eiχ3 sin θ0 sin θ1 sin θ2|11〉, (2)

where χj, θj are chosen uniformly according to

(2π)−4d(sin θ0)6d(sin θ1)4d(sin θ2)2dχ0dχ1dχ2dχ3, (3)

the Haar measure, with 0 ≤ χi < 2π and 0 ≤ θi <
π/2. (We include an extra overall random phase, eiχ0 , to
maintain consistency with SU(n).)

Calculating τ = 4det|ρA| using Eq. (2) and integrat-
ing over the Haar measure, Eq. (3), gives 〈τ 〉 = 2/5. A
randomly selected pure state of two qubits might thus be
expected to have 0.4 tangle units of entanglement, and
we have already noted that states exist with the max-
imum (= 1) and minimum (= 0) amounts of entangle-
ment. More informative is the distribution, the density
of states (over the Haar measure) with a given value of
the tangle. Calculated numerically by sampling 30 mil-
lion random pure states, this distribution is shown in Fig.
1. In tangle units, the distribution is broad, with many
states having little or no entanglement compared to only
a few with high or maximal entanglement.

However, it must be emphasized that the shape of the
distribution is heavily dependent on the choice of entan-
glement measure. Compare in Fig. 1 the distributions of
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FIG. 1: Distribution of the tangle (∗), concurrence (+) and
entanglement of formation ( ) for two qubit pure states sam-
pled uniformly over the Haar measure.

the concurrence C = τ 1/2 and the entanglement of forma-
tion (first shown in [22]). The corresponding average val-
ues (calculated numerically and in agreement with [22])
are 〈C〉 = 0.5890± 0.0002 and 〈Ef〉 = 0.4808± 0.0002.
Given the plethora of entanglement measures in current
use, it is important to only compare like with like. Also,
it is interesting to note that, though close, none of these
average entanglement values are exactly equal to 1/2,
which would be the näıve guess.

For three qubits, it is possible to define the 3-tangle
τ3 for a pure state [20], giving a measure of the purely
three-way entanglement in the system. A value for the
tangle between each of the three possible pairs of qubits
can also be calculated, τAB , τAC and τBC , using Eq. (1).
These satisfy,

τ3 = τA − τAB − τAC (4)

where τA = 4det|ρA| as before, except now both qubits B
and C have been traced out to leave the partial density
matrix ρA. Equation (4) holds for any permutation of A,
B and C. For the GHZ state (|000〉+ |111〉)/

√
2, which

has the maximum possible 3-tangle, τ3 = 1 and τAB = 0,
while for the W state (|001〉 + |010〉 + |100〉)/

√
3, τ3 =

0 and τAB = 4/9 for each pair, the maximum possible
amount of pairwise tangle in a three qubit state [15].

As for two qubits, the average values for τ3 and τAB can
be calculated. After analytically evaluating somewhat
lengthy integrals, they are found to be 〈τ3〉 = 1/3 and
〈τAB〉 = 1/6. Since τ3 and τAB satisfy Eq. (4), one can
consider the quantity 〈τ3 + τAB + τAC + τBC〉 = 5/6, the
average total entanglement (in tangle units) in a random
pure state of three qubits. This gives an average entan-
glement of 5/18 ' 0.27 per qubit for three qubits, com-
pared with 1/5 per qubit for two qubits. A GHZ state has
a tangle of 1/3 per qubit and a W state 4/9. O’Connor
and Wootters [13, 14] considered rings and chains of N
qubits in a translationally invariant state and determined
the maximum possible nearest neigbour entanglement to
be at least C = 0.434467 or τ = 0.18876157 per qubit.

The distributions for τ3 and τAB , Fig. 2 (inset), were
calculated numerically by samping a million pure three
qubit states drawn randomly over the Haar measure, the
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FIG. 2: Distribution of the 2-tangle for two (∗), three (filled
4) and four ( ) qubit pure states; inset: distribution of the
3-tangle (4) and pairwise tangle (filled 4) for three qubit
pure states, all sampled uniformly over the Haar measure.

generalization of Eq. (3). The 2-tangle is now much
more concentrated near zero than for two qubits, while
the 3-tangle is broadly peaked around the average value.

These values for pairwise and three-way tangles would
be more useful if it was possible to continue in the same
manner for four and more qubits. Currently, there is no
known analytical expression for the 3-tangle of a mixed
state of three qubits, nor is it known whether expres-
sions equivalent to Eq. (4) can be found beyond three
qubits. However, we can at least continue to evaluate
pairwise entanglement for larger pure states. For four
qubits the average pairwise entanglement evaluated nu-
merically from a million randomly sampled four qubit
pure states is 0.03138 ± 0.00006 tangle units per pair.
Despite the low value for pairwise entanglement, a typ-
ical four qubit pure state is still highly entangled over-
all [23], as can be shown by considering the entropy of
its subsystems. For a pure state of N qubits, the en-
tropy SN = 0. If the system is split into two pieces, of
k qubits and (N − k) qubits, then each subsystem has
the same entropy, Sk = S(N−k) =

∑
i λi log2 λi, where

the λi are the eigenvalues of the reduced density matrix
ρk obtained by tracing out the other (N − k) qubits (or
vice versa). The entropy Sk measures how entangled the
two subsystems are with each other. For four qubit pure
states, 〈S1〉 = 〈S3〉 = 0.8661 . . . and 〈S2〉 = 0.6653 . . .
normalised per qubit such that 0 ≤ Sk ≤ 1.

The four qubit pairwise distribution, shown in Fig. 2,
is now strongly peaked around zero entanglement. A
closer look at the numerical data reveals a new feature
not present in the distributions for two or three qubit
pure states: there is now a significant fraction of the pairs
(24%) with zero entanglement, causing the outlying point
at 67 for the bin that includes zero. This is not just zero
to numerical accuracy. The formula for the concurrence
of a pair of qubits in a mixed state ρ is given by Eq.
(1). Clearly, if the values of the λi are such that the
maximum is zero by a significant margin, then the result
is effectively exact. This trend continues for random pure
states of five and six qubits, with (evaluated numerically



3

2
2

2

2

2

3 3
3

3

3

3

4 4 4
4

4

4

4

5 5 5 5
5

5

5

4 4
4

4
4

4

4

5 5 5
5

5
5

5

5

2 3 4 5 6 7 8 9 10 11 12
number of qubits in pure state (N)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

av
er

ag
e 

en
ta

ng
le

m
en

t

FIG. 3: Average negativity for subsets of m qubits selected
from random pure states sampled uniformly over the Haar
measure. The symbol gives m. For subsets of two qubits, the
tangle (∗) and concurrence(+) are also shown.

over samples of 100,000) 80% and 99% respectively of
pairs having zero entanglement in such states selected
randomly over the Haar measure. This is the probably
P2 of finding a chosen pair has zero entanglement. The
probability Ps that the state as a whole has zero pairwise
entanglement in all possible pairs is smaller, but also fast
approaching 100%; by N = 7 numerical sampling gives
Ps > 99.9%. So we have a picture of typical pure states
having less and less pairwise entanglement as the number
of qubits increases, with the measure of states with some
pairwise entanglement becoming essentially zero beyond
7 qubits. In other words, the fall off is not gradual, but
occurs sharply between 3 < N . 7.

This immediately begs the question, what happens to
the entanglement in subsets of three or more qubits as
N increases? While it isn’t known how to calculate the
3-tangle for mixed states of three qubits, there is another
measure of entanglement that can be used to answer this
question. The partial transpose of a density matrix ex-
pressed in the standard basis is obtained by interchang-
ing terms with a selected qubit in the opposite state [24].
Such a matrix, denoted ρT , can have negative eigenvalues
if the original density matrix ρ is entangled. If ρT has
only positive eigenvalues for any combination of trans-
posed qubits (up to half the total in ρ), then ρ is said to
be PPT (positive partial transpose), and in most cases,
ρ is separable. The exceptions have bound entanglement
[25, 26], which only occurs in systems with Hilbert space
larger than 2⊗ 2. Bound entangled states are known to
be relatively rare [22], of finite measure but smaller than
the measure of separable states, which decreases expo-
nentially in the number of qubits.

A PPT test is sufficient to show that a three qubit sub-
set has no free entanglement, but there is also a quanti-
tative measure of entanglement that can be derived from
ρT , the negativity. Following Życzkowski [12] we define
the negativity as twice the absolute value of the sum of
the negative eigenvalues of ρT ; Vidal and Werner [27]
recently proved it is an entanglement monotone. Figure
3 shows how the average values compare with the tan-
gle and concurrence, two curves are shown for subsets
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FIG. 4: Percentage of subsets of m qubits with no (free) en-
tanglement in random pure states sampled uniformly over the
Haar measure, where m is the symbol.

of four and five qubits because there are different val-
ues for transposing one qubit, or two qubits at once. A
log-linear plot has been used to show that all the entan-
glement measures fall faster than exponentially as the
number of qubits in the pure state increases.

Note, however, that the negativity does not satisfy any
convenient quantitative relation like Eq. (4) for the tan-
gle. It is thus not possible to identify finite amounts of
three-way entanglement unless you also know that there
is zero pairwise entanglement in the pure state. Con-
versely, if the negativity of all subsets of three qubits
is zero, there is still the possibility of bound entangle-
ment. Nonetheless, since bound entanglement is a rela-
tively rare phenomenon, if we are willing to neglect it in
order to obtain the shape of the larger picture over all
pure states, we can use the negativity to identify states
that have approximately zero entanglement in subsets of
three, four and five qubits, Fig. 4. In each case, it drops
sharply to zero between N ' 2m and N = 2m+3, based
on numerical analysis of random pure states sampled uni-
formly over the Haar measure for N ≤ 13 and m ≤ 6.

This result can be explained at least qualitatively as
follows. Page [28] conjectured (later proved [29, 30]) that
the average entropy of such a subsystem is (in the nota-
tion of this paper)

〈Sk〉 ln(2) =

2N∑

j=2N−k+1

1

j
− 2k − 1

2N−k+1

' k ln(2)− 1

2N−2k+1
(5)

where the approximate version is valid for 1� k ≤ N/2.
These average entropies can also be calculated numeri-
cally in the same manner as we calculated the tangle and
concurrence, by sampling random pure states. Compari-
son of these values with the theoretical formula provides
a useful test of the accuracy of the numerical method,
and agreement was generally better than 3 significant
digits, even for relatively small sample sizes. A useful
way of presenting 〈Sk〉 is shown in Fig. 5, where it is
plotted per qubit for both the larger and smaller of the
two subsystems. Equation (5) implies that the entropy of



4

1

1

1
1 1 1 1 1 1

2

2
2

2 2 2 2

3

3
3 3 3 3 3

4

4
4 4 4

5
5 5

6

2 3 4 5 6 7 8 9 10 1112
number of qubits in pure state  (N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

av
er

ag
e 

en
tr

op
y 

(b
its

 p
er

 q
ub

it)

smaller subsystem

larger subsystem

<Ef> = 0.4808...

2
3

4
5 6 7 8 9

3

4
5

6
7 8

8
7

6
5

4
5

6
7

7
6

10 11

9 10

9

8

FIG. 5: Average entropy of subsystems plotted per qubit for
random pure states sampled uniformly over the Haar measure.
Symbols give subsystem size, k and (N − k). For N = 2, the
average entropy corresponds to 〈Ef 〉 for two qubits, as shown.

the smaller subsystem is nearly maximal, which in turn
implies that the subsystem is nearly maximally mixed,
i.e. not entangled. In Fig. 5 this is shown by the lines
for the smaller subsystem asymptoting to 1 as the dif-
ference between k and N becomes larger. There is a set
of unentangled states of finite measure [22] surrounding
the maximally mixed state (ρ = 1). As N increases and
the smaller subsystem becomes more mixed, it enters this
unentangled region for finiteN , thus explaining the rapid
transition to zero entanglement shown in Fig. 4.

In conclusion, we have shown that in randomly cho-
sen pure states of N qubits, there is a cut-off, m, be-
low which subsets of qubits taken from the pure state by
partial tracing over the remainder can be expected to be
PPT (i.e. no free entanglement). For N ≤ 13, the limited
range accessible to our numerical studies, m & (N−3)/2.
There are already experimental situations (such as ion
traps) with more than six distinguishable quantum par-
ticles in which such entangled states might be generated.
Only looking for pairwise entanglement in such systems
may give misleading results.
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