Quantum Computing: Implementation

Peter Zoller Institute for Theoretical Physics University of Innsbruck Austria

- There has been significant experimental progress over the last year
 - good candiates, but no clear winner(s)
 - strong European presence in theory and experiment
- US ROADMAP for quantum computing Dec 2002 on www.qist.lanl.gov
- DISCLAIMER: this is not a (complete) review / pedagogical talk, or a talk to promote a specific field

Why implement a quantum computer?

- implement quantum hardware for ...
 - quantum algorithms (large resources / long term)
 - ...
 - quantum simulations (specialized hardware / short term)
 - [quantum communications]

GOAL: outperform a classical computer (on a useful problem)

- the bigger picture & spin-offs
 - precision measurements beyond Standard Quantum Limit: atomic clocks, ...

-

GOAL: develop quantum technologies

Quantum Computing Models / Scenarios

- standard quantum computing paradigm
 - quantum bit / register
 - quantum gate
 - initialize / read out
 - [no decoherence]

quantum networking and quantum communications

- Nodes: local quantum computing
 - store quantum information
 - local quantum processing
- Channels: quantum communication
 - transmit quantum information

... other versions

- one way quantum computer (Briegel)
- continuous variable quantum computing (Braunstein & Lloyd)
- [and cv quantum communications]
- finite temperature (NMR)

How? The Beauty Contest

- AMO
 - ions, neutral atoms, cavity QED (single quanta / ensembles)
 - linear optics qc
- Solid State
 - Josephson junction
 - Quantum dots
 - Solid State NMR (Kane, Fullerenes)⁴

NMR

liquid state / high

temperature

- other
 - electrons on He surfaces
 - spectral hole burning

the role of theory

US ROADMAP (Dec 2002)

(as starting point and reference)

DiVincenzo Criteria

- 1. scalable system of well-characterized qubits
- 2. initialize qubits
- 3. long decoherence times
- 4. universal set of quantum gates
- 5. qubit readout

- 6. interconvert stationary and flying qubits
- 7. faithful transmission of qubits between specified locations

GOAL: satisfy requirements of fault tolerant quantum computing

Questions and Answers

• Q.: are there fundamental obstacles to implement fault tolerant quantum computing?

NO, but technological challenge

• Q.: Is there a best approach?

NO, but a few top candidates

	scalable	onvical noubit nitialite	decoher	ence dugates	readout	L-7 Hyin	oubit transmiss
QC Approach	#1	#2	#3	#4	#5	#6	#7
NMR	9	(\diamond	Q	Ø	9	6
Trapped Ion	(Ô	\bigcirc	\mathbf{Q}	\mathbf{Q}	(\diamond
Neutral Atom	ô	Ø	\diamond	Ø	Ø	(\$
Optical	Ø	Ô	\diamond	Ô	Ô	(\diamond
Solid State	Ô	Ô	Ô	Ô	Ô	â	Ô
Superconducting	Ô	Ô	Ô	Ô	Ô	Ô	ô
Unique Qubits							
e-Helium	Ô	\diamond	Ô	Ô	Ô	Ô	Ô
Spectral Hole Burning	Ô	\bigcirc	Ô	Ô	\bigcirc	Ô	\diamond
•			-		-		

Legend: \bigotimes = a potentially viable approach has achieved sufficient proof of principle

 \mathbf{O} = a potentially viable approach has been proposed, but there has not been sufficient proof of principle

 $\mathbf{\hat{o}}$ = no viable approach is known

December 2002

QC ROADMAP

time

2012

- (physical) qubit
 - creation and readout
- single qubit operations
 - Rabi flops, decoherence
- two-qubit operations
 - two qubit gate, decoherence, gate tomography, [Bell]
- operations 3-10 qubits
 - simple quantum algorithms, error correction, decoherence free subspace, [GHZ, teleportation]
- 2007 🕂 🔹 one logical qubit
 - 3-10 logical qubits
 - fault tolerant operations

- criteria:
- ✓achieved in lab
- ✓ expected to work
- ✓ not know how to (road block)

AMO = Atoms, (Molecules) and Optics

- atoms and ions (as qubits)
- photons (as flying qubits)

Cold atoms as quantum memory

cold atoms, ions [and molecules]

single trapped atom:

qubit in *longlived* internal states

DiVincenzo criteria:

- preparation of the qubit
 - trapping
 - cooling
- single qubit operations
- two qubit operations
 - requirements
 - timescales
- decoherence
- initialization and read out

Ion traps ... preparation of qubits

• ion traps

NIST Boulder, Innsbruck, Munich, Hamburg, Aarhus, Oxford, London, ... issues:

- ✓ conservative potential v_{trap} ~ 0.3 10 MHz
- ✓ single atom loading
- ✓ laser cooling to ground state

 ✓ decoherence: heating [problem solved!?]

Neutral atom traps & cooling

far-offresonance optical lattice

arrays of microtraps

issues:

- ✓ conservative potential
- single atom loading of large arrays (?!)
 [problem solved via Mott insulator loading from a BEC]
- ✓ laser cooling
- ✓ decoherence: spontaneous emission ~ sec
- ✓ LARGE # of atoms >10⁴

spin dependent optical potentials

addressing (?): super lattices, gradients

Note: some interesting applications like quantum simulations do not need individual addressing

Neutral atoms traps

single atom FORTs

 grab an atom from a BEC: "quantum dot"

BEC

two movable single-atom FORTs (Orsay)

Magnetic traps

• magnetic traps

Heidelberg, Munich, Harvard, Orsay control pad for selective addressing of each sub system

© Schmiedmayer

- ✓ conservative potential surface effects (?)
- ✓ single atom loading (?)
- ✓ laser cooling (?)
- ✓ loading from a BEC! Mott insulator loading?

Single qubit gates

• single qubit gates

exp: high fidelity Rabi osc are standard

requirement: spatial separation

Entanglement: two-qubit gates

• implement entanglement of two qubits

example: phase gate $\begin{array}{l} |00\rangle \rightarrow & |00\rangle \\ |01\rangle \rightarrow & |01\rangle \\ |10\rangle \rightarrow & |10\rangle \\ |11\rangle \rightarrow e^{i\phi}|11\rangle \end{array}$

- How?
 - auxiliary collective mode as data bus: ions, CQED, ...
 - controllable two body interactions: collisions, ...

(dynamical phases, geometric phases)

Ion Trap Quantum Computer

Cold ions in a linear trap

theory: Innsbruck, Aarhus, London, Brisbane .. exp: NIST Boulder, Innsbruck, Munich, Oxford

- Qubits: internal atomic states
- Quantum gates: entanglement via exchange of phonons of quantized center-of-mass mode
- Achievements:
 - entanglement of four ions
 - single & two qubit gates with and without individual addressing

addressable 2 ion controlled-NOT (R. Blatt et al., Nature 2003)

2 ion controlled NOT (Wineland et al., Nature 2003)

Limits?

- new gate designs overcome limits ...
 - NO ground state cooling
 - NO individual addressing required (of two ions)
 - gate time NOT limited by the trap period (very fast gates)
 - NO Lamb Dicke requirements

 optimizing gate operation and fidelities, and simplify requirements by coherent control techniques (quantum engineering)

Scalability: moving ions

• NIST Boulder © D. Leibfried

Cirac-Zoller 2000: "moving head"

- I. multiplexed trap architecture, hyperfine ground states
- II. optical pumping, ground-state cooling (99.9%) $\Rightarrow |\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow...\rangle |0\rangle$
- III. T_{dec} =1 ms (>100 s), T_{heat} =10 ms (1 s), T_{gate} =32 µs (500 ns)
- IV. single and two qubit gates
- V. electron shelving method, 99% readout efficiency (100%)
- All requirements met *experimentally*!
- No fundamental limits in sight!

Entanglement via collisions in an optical lattice

Albuquerque exp.: Munich

interactions by moving the lattice + colliding the atoms "by hand"

Ising type interaction as the building block of the UQS

$$H = -\frac{J}{2} \sum_{\langle a,b\rangle} \sigma_z^{(a)} \otimes \sigma_z^{(b)}$$

Feynman's Universal Quantum Simulator (specialized quantum computing)

- Example: condensed matter
 - spin models
 - Hubbard models

$$|\psi\rangle = \sum_{\tilde{\sigma}} c_{\tilde{\sigma}} |\sigma_1 \sigma_2 \dots \sigma_N|$$

Feynman, Lloyd, ...

 idea: effective Hamiltonian H_{eff} evolves as time average over other Hamiltonian H

implementation: optical lattice

• solving high-T_c superconductivity models, ... ?

Optical Cavity QED

optical: Munich, Caltech, Georgia Tech, Bonn, Innsbruck microwave: ENS, Munich

• optical / microwave photons in a high-Q cavity as "data bus,,: FAST

problem in the past: storage of atoms

also:

✓ single photon source

✓ entangled photon source

quantum transmission between nodes

Cabrillo et al. `99

Probabilistic Entanglement: example ... single atoms / ensembles / quantum dots

entanglement generation

- Weak (short) laser pulse, so that the excitation probability is small.
- If no detection, pump back and start again.
- If detection, an entangled state is created

$$\sim |0,1\rangle + |1,0\rangle$$

... which allows us to build a quantum repeater

- we can do long distance quantum communication if we have a high fidelity EPR pair
- quantum repeater protocol = generate *long distance entangled pairs* with fidelity $F \sim 1$ in a small number of trials $\sim L^{\eta}$ in the presence of noise

Optics

- qubits = photons
- quantum communication and networking [see cavity QED]
- optical (only) quantum computing
 - single photon nonlinearities

- linear optics quantum computing (Knill, Laflamme, Milburn)

- ✓ photodetection as a nonlinearity
- ✓ single photon sources
- ✓ efficient photo detectors

Atomic ensembles: quantum memory for light

Atomic ensembles as quantum memory

• We consider an ensemble of N atoms

- storing qubits ...
- storing continuous variable states, teleportation (Aarhus)

- ✓ coherent spin state =vacuum state
- ✓ there are *many* cv quantum states around it:

Legend: \bigotimes = a potentially viable approach has achieved sufficient proof of principle \bigotimes = a potentially viable approach has been proposed, but there has not been sufficient proof of principle \bigotimes = no viable approach is known

Solid State

- ... comes in many flavors
- systems
 - spins, excitons in quantum dots, impurities, ...
 - solid state NMR (Kane, Fullerenes,...)
 - Josephson Junctions
 - spectral hole burning
- + in line with existing fabrication / technologies
- + "switch on and it is there"

solid state \rightarrow scalable

not solid state \rightarrow not scalable

- [black art of] material science: decoherence (fundamental limits?)

Electron spins in semiconductor quantum dots

- spin in spatially confined structures (e.g. quantum dot)
- quantum dots:
 - electrically gated quantum dots: \leftrightarrow electronics

- self-assembled etc quantum dots: \leftrightarrow optics

Electronics: electrically gates quantum dots

Loss DiVincenzo proposal

300 mKelvin, B ~ Tesla

- qubit: electron spin [decoherence: hyperfine, ..., $\sim \mu s$]
- interactions:
 - 2 qubit: exchange interaction spin-charge [speed ~ tens of ps]
 - 1 qubit: g-factor
- measurement: SET
- achievements ... (?)

Optics: self-assembled quantum dots etc.

charged QD: electron spin as qubit

decoherence: µs (hyperfine)

[size fluctuations]

preparation: optical pumping

measurement: quantum jumps excitons, and spin charge conversion

decoherence: spontaneous emission (and phonons)

interactions: spin ^{laser} charge

- exp.: exciton Rabi oscillations (5 groups)
- exp.: spectroscopy single dot, molecules

"artificial atoms

 $\leftrightarrow \text{AMO}$

QD molecules

- ... natural connection with:
 - CQED

• probabilistic entanglement

photo detectors

single photon sources

(Immamoglu, Yamomoto)

- see also: CQED with atoms, Nitrogen vacancies
- ↔ linear optics quantum computation

- qubit: nuclear spin of P donors in Si
- interactions: donor electron nuclear spin, exchange interaction
- read out: SET
- decoherence: qubit electron interaction
- gate time: ~second
- status: P implanted (Australia), ... ?
- Fullerenes

N in cage

Legend: 😔 = a potentially viable approach has achieved sufficient proof of principle

 \mathbf{O} = a potentially viable approach has been proposed, but there has not been sufficient proof of principle

 \bigoplus = no viable approach is known

December 2002

Josephson Junctions

- qubits = superconducting circuits @ mKelvin
 - charge
 - flux, energy
 - levels
- interactions:
 - charge: capacitive
 - flux: inductive

example: charge qubit (Cooper pair box)

- energy scales 1 10 GHz, clock speed of ~ns
- preparation: cooling
- manipulation: rf pulses
- measurement: (rf) SET, SQUID (projective measurements?)
- decoherence: theory ~ms, exp ~μs [charge hopping? 1/f noise]
- theoretical proposals for gates etc.

qubit

flux qubits: spectroscopy

Mooij et al, ...

coupled qubits: coupled Josephson Junctions (2003)

Quantum oscillations in two coupled charge qubits

Yu. A. Pashkin*†, T. Yamamoto*‡, O. Astafiev*, Y. Nakamura*‡, D. V. Averin§ & J. S. Tsai*‡

Legend: \bigotimes = a potentially viable approach has achieved sufficient proof of principle

 \bigcirc = a potentially viable approach has been proposed, but there has not been sufficient proof of principle

 $\mathbf{\hat{\Phi}}$ = no viable approach is known

December 2002

Facts & Opinions 1

- FACT: quantum jump in experimental progress during last ~ 1 year
- FACT: Europe is very strong, both in theory, and experiment.
- FACT/OPINION : no fundamental physical obstacles, but a significant technological challenge
- => OPINION quantum computing (in some form) is likely to happen.
 [Q.: will it happen in Europe?]

Facts & Opinions 2

- FACT there are no clear winners at the moment, but hot candidates: identified by (i) theory: complete qc model [scalability], and (ii) an experimental program on the way of demonstrating these ideas
- FACT / OPINION Ideas have there life time, but interact with other fields liquid state / high temp NMR not scalable time coherent control ion traps, JJ time quantum dots, ... time CONCLUSION: funding only what is hot right now is a mistake

Facts & Opinions 3

 Quantum computing is developing more and more a technological component = limited at present by technological progress

• OPINION do not disentangle theory and experiment