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odel of  lassical 'rocessor

data register

Pin 10010110111

output register

1101110110] Pout

program register
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data register output data ;egister

Pd oy

program register

S

Quantum processor — fixed unitary transformation U,

H ,— data system, S(H,) — data states
H, — program system, S(H,) — program states

uantum rocessor



WO S cenarios

 Measurement-based strategy - estimate the state of program
N +1
N +d

F =

* Quantum strategy — use the quantum program register
conditional (probabilistic) processors

unconditional processors



-NOT as | 'nconditional ('uantum ''rocessor

* program state |0) = 1 implemented, i.e. p; — p) = py

» program state |1) = o, implemented, i.e. p; — p) = 0,0,

e general pure state|Ep> = «a|0), + 8[1), = pg — oy =1ai2p; + |6 0ppios
e unital operation, since P[1] = 1aPr1 + 18F 0,10, =1

 program state 1s 2-d and we can apply 2 unitary operations



uestion (" ielsen & ¢ huang)

Is it possible to build a universal programmable quantum gate
array which take as input a quantum state specifying a quantum
program and a data register to which the unitary operation is
applied ?

on a qubit an .o number of operations can be performed

M.A.Nielsen & I.L.Chuang, Phys. Rev. Lett 79, 321 (1997)



heorem

‘¢/>d — U|¢>d

Ug, (1) ®1Z0),) = (U1¥) ® |Epr.4)

* no universal deterministic quantum array of finite extent can be realized

 on the other hand — a program register with d dimensions can be used to
implement d unitary operations by performing an appropriate sequence

of controlled unitary operations

answer) = |NO)|deterministic) + [YES)|probabilistic)
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SCIENCES

*Vidal & Cirac — probabilistic implementation of
10) . 10)

-NOT as ‘robabilistic ('uantum 'rocessor

\g |) ‘

|11

U, by M

0) = —=(€%/210) + e 1¢/2|1))

i N 10)

L/

G.Vidal and J.I.Cirac, Los Alamos arXiv quant-ph/0012067 (2000)
G.Vidal, L.mesanes, and J.I.Cirac, Los Alamos arXiv quant-ph/0102037 (2001).




-NOT as ‘robabilistic ('uantum 'rocessor
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10)

|11

1 . )
o) = —=(€"¥/2]0) + e~ ¢/%|1))
N <> 1)

Correction of the error — new run of the processor with ‘ 20)



niversal 'robabilistic 'rocessor

input registers
output rééfi':s’rers

‘§p> — z]{;:ak k) s M) — 1 k)

 implementation of any unitary transformation
« BUT! only with probability and P = (dim H,) !

SucCCess

eExample (Quantum information distributor)
H =H,®H, ; D=dmH,
{|k)}, = {|k")}, ... basis of maximally entangled states of 7z,

{U.}. ...setof D? unitaries forming an operator basis, Tr U ,IU , = D6,

* subset of unitary transformations — higher probability



mplementation of '\ aps via
nconditional

uantum rocessors

Set of operations

()



athematical 'escription of (Juantum

rocessors

* definition of U,, via “Kraus operators” 4, := <l ‘U i ‘k>p

Udp( v), ®|k>p):Z(Akl|‘//>d)®|l>p

/
t _
 normalization condition ZI: AkllAkzl - 5k1k2 1,
 induced quantum operation A; ™ P, =D, [Pd] = Z AkdeAZz
/

e general pure program state |E>p = Zak |k>p
Py Py = [ ] ZA E/Od E)
4,(2)= p<l|Udp|“>p _Zk:“k i

e can be generalized for mixed program states



lasses of 'rocessors

* Induced mapping

g: program states — set of operations

£ —G(&)=9, ; @ :S(H,)— S(H,)

* Clases of processors

1. U processors — implement unitary operations
2. covariant processors

3. injective processors — each & encodes different
operation @,



processors

Us ([0}, ®1K),) = (U 19), ®[k7),)

the most general processor that implements N = dim H,
different unitaries

elementary programs |k>p realize unitary transformation U,

general program state £, implements unital operations, i.e. P[1] =1
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njective 'rocessors

the induced mapping G is injective, i.e. V pair 5y, = 5y, = &, = &

— Nof operations

s <H>v
g
Does such processor exist? YES partial swap processors:
By = costl +sinfS S(|Y)®|¢)) = |¢) @|¢), dimH, = dim H,

program =, encodes contractive operation &= with the only fixed point =,
Pz[=4] = =y



ovariant ‘rocessors

* the covariance condition

po—= U

[1]

o)
<

o_[UpUt]=UD [p,]U" vEeScS(H
VYU e SU(dlde)

* covariance with respect to the program states from the set S
* if § = § (H), then the existence of nontrivial covariant U, is questionable

* if U,, implements unitary transformation = it is not covariant in this sence



quivalent "rocessors

>
(2]
>
o
m
=
<
o
-

N

|
I

v

e UC(ZZ) :(1®V)UC(Z;))(1®U), then Uc%,) ~ C(i??)

* equivalent processors implement the same quantum operations
* basis operators A;l) and A](.Z) associated with the two processors satisfy

N
A;Z) N Z_l(Upl )jm (Up2 )nk A%%



nverse ‘roblem

“Given a set @, of quantum operations . Is it possible to design a
processor that performs all these operations?”

1. Continous set of unitaries = question of universality NO
2. Phase damping channel = model of decoherence YES

3. Amplitude damping channel = model exponetial decay  NO
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onclusions & ('pen (Juestions

programmable quantum computer — programs via quantum
states programs can be outputs of another QC

SCIENCES

some CP maps via unconditional quantum processors

arbitrary CP maps via probabilistic programming

controlled information distribution (eavesdropping)

simulation of quantum dynamics of open systems

set of maps induced by a given processor (loops)

quantum processor for a given set of maps
* quantum multi-meters
M.Hillery, V.Buzek, and M.Ziman: Phys. Rev. A 65, 022301 (2002).

M.Dusek and V.Buzek: Phys. Rev. A 66, 022112 (2002).
M.Hillery, M.Ziman, and V.Buzek: Phys. Rev. A 66, 042302 (2002)
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