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Quantum processor – fixed unitary transformation Udp

Hd – data system, S(Hd) – data states
Hp – program system, S(Hp) – program states



Two ScenariosTwo Scenarios

• Measurement-based strategy - estimate the state of program 

• Quantum strategy – use the quantum program register  
conditional (probabilistic) processors
unconditional processors
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C-NOT as Unconditional Quantum ProcessorC-NOT as Unconditional Quantum Processor

dρ′dρ CNOT 0 0

CNOT 1 1x

ψ ψ

ψ σ ψ

=

= ⊗|Ξ 〉p

• program state

• program state 

• general pure state

• unital operation, since

• program state is 2-d and we can apply 2 unitary operations

220 1 d d xp dp xp d ρα β ρ α ρ β σ ρ σ′ = +Ξ = + ⇒ 6

[ ] 22 x xα β σ σΦ = + =1 1 1 1

0  implemented, i.e. d d d1 ρ ρ ρ′→ =⇒

1  implemented, i.e. dx d x d xρ ρσ σ ρ σ′→ =⇒



Question (Nielsen & Chuang)Question (Nielsen & Chuang)

Is it possible to build a universal programmable quantum gate 
array which take as input a quantum state specifying a quantum 
program and a data register to which the unitary operation is 
applied ?

on a qubit an ∞ number of operations can be performed

M.A.Nielsen & I.L.Chuang, Phys. Rev. Lett 79, 321 (1997)



TheoremTheorem
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• no universal deterministic quantum array of finite extent can be realized

• on the other hand – a program register with d dimensions can be used to 
implement d unitary operations  by performing an appropriate sequence 
of controlled unitary operations



C-NOT as Probabilistic Quantum ProcessorC-NOT as Probabilistic Quantum Processor

1

ψ

0

1

0

'ψ

ϕ
dψUϕ

•Vidal & Cirac – probabilistic implementation of
0

i
2 zU e
ϕσ

ϕ
−

=

( )i /2 i /21 0 1
2

e eϕ ϕϕ −= +

G.Vidal and J.I.Cirac, Los Alamos arXiv quant-ph/0012067 (2000)
G.Vidal, L.mesanes, and J.I.Cirac, Los Alamos arXiv quant-ph/0102037 (2001).
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Correction of the error – new run of the processor with | 2ϕ〉



Universal Probabilistic ProcessorUniversal Probabilistic Processor
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• implementation of any unitary transformation
• BUT! only with probability and Psuccess = (dim Hp) –1
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•Example (Quantum information distributor)

... basis of maximally entangled states of Hp

... set of D2 unitaries forming an operator basis, 

H H H H; dimp d d dD= ⊗ =

{ } { }'k k
k k=
{ }k kU †

k l klU U Dδ=Tr
• subset of  unitary transformations – higher probability 



Implementation of Maps via
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Implementation of Maps via
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Mathematical Description of Quantum 
Processors

Mathematical Description of Quantum 
Processors

• definition of Udp via “Kraus operators”

• normalization condition

• induced quantum operation

• general pure program state

• can be generalized for mixed  program states
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Classes of ProcessorsClasses of Processors

• Induced mapping
G: program states → set of operations

( )G H H; : ( ) ( )p p d dS Sξ ξξ ξ→ ≡ Φ Φ →

• Clases of processors

1. processors – implement unitary operations
2. covariant processors
3. injective processors – each ξp encodes different 

operation Φξ

U



U processorsU processors

( ) ( ): 'dp kd p d pU k U kψ ψ⊗ = ⊗

the most general processor that implements N = dim Hp
different unitaries

elementary programs realize unitary transformation Uk

general program state ξp implements unital operations, i.e. Φ[1] = 1
pk



Injective ProcessorsInjective Processors

the induced mapping G is injective, i.e. 1 2 1 2 pair p p∀ Ξ ≠ Ξ ⇒ Φ ≠ Φ

Set of operations

G

( )HS

Does such processor exist?

dΞprogram encodes contractive operation       with the only fixed point pΞ ΞΦ

YES partial swap processors:
( ) ,  dim dimp dS ψ φ φ ψ⊗ = ⊗ =H H

[ ]d dΞΦ Ξ = Ξ

cos sinP Sθ θ θ= +1



Covariant ProcessorsCovariant Processors

• the covariance condition 

Udp

dρ U

⇔ Udp

Udρ′ dρ′dρ
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• covariance with respect to the program states from the set S

• if S = S (H), then the existence of nontrivial covariant Udp is questionable

• if Udp implements unitary transformation ⇒ it is not covariant in this sence



Equivalent ProcessorsEquivalent Processors

Udp
U V

Udp⇔

( ) ( ) ( ) ( )2 1if   ,  then dp dpU V U U= ⊗ ⊗1 1 (1) (2)
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• equivalent processors implement the same quantum operations
• basis operators                         associated with the two processors satisfy(1) (2) and jk jkA A
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Inverse ProblemInverse Problem

“Given a set Φx of quantum operations . Is it possible to design a 
processor that performs all these operations?”

1. Continous set of unitaries = question of universality

2. Phase damping channel = model of decoherence

3. Amplitude damping channel = model exponetial decay

NO

YES

NO



Conclusions & Open QuestionsConclusions & Open Questions

• programmable quantum computer – programs via quantum 
states  programs can be outputs of another QC

• some CP maps  via unconditional quantum processors
• arbitrary CP maps via probabilistic programming 
• controlled information distribution (eavesdropping)
• simulation of quantum dynamics of open systems
• set of maps induced by a given processor (loops)
• quantum processor for a given set of maps
• quantum multi-meters

M.Hillery, V.Buzek, and M.Ziman: Phys. Rev. A 65, 022301 (2002).

M.Dusek and V.Buzek: Phys. Rev. A 66, 022112 (2002).

M.Hillery, M.Ziman, and V.Buzek: Phys. Rev. A 66, 042302  (2002)
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