
Perturbation theory for scalable solid-state quantum 
computation, and single-spin measurement using 

magnetic resonance force microscopy
Gennady Berman

Outline
1. Model: Ising spin chain for scalable quantum computation.
2. Perturbation approach (slow and fast dynamics; small 

parameters).
3. Examples: teleportation and quantum full adder.
4. MRFM single-spin measurement (CAI and OSCAR)
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1000 qubit spin quantum computer
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Frequency difference:

Number of qubits:  L

Izing constant:  J
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γ - gyromagnetic ratio



Dynamics of a quantum computer

1. Quantum computer Hamiltonian:
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2. Strategy: in order to remove time-dependence in H we: 
(a) make transformation to the frame rotating with the frequency   ,
(b) use eigenstates of the effective Hamiltonian to compute  

transition  probabilities.

n•

pulses:



Resonant (slow) and non-resonant (fast)
dynamics

| nL-1 nL-2…nk …nk’ … nk’’ … n1 n0 

pulse

| nL-1 nL-2…nk …nk’ … nk’’ … n1 n0 

Resonant or 
near-resonant

| nL-1 nL-2…nk …nk’ … nk’’ … n1 n0 

| nL-1 nL-2…nk …nk’ … nk’’… n1 n0 

non-resonant
〉

〉
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〉

Pulse which is resonant for a given qubit acts also on all other 
qubits producing many unwanted states with small probabilities. 

nk and  nk indicate the spins with opposite orientation



Perturbation theory based on 
diagonalization of large sparse matrices
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Structure of Hamiltonian sparse matrix 2L-1 of 2 × 2 blocks and 
connections (one-spin-flip non-resonant transitions) between them:
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Interaction 
between 
blocks:

Eigenstates of  the Hamiltonian Evolution operator

Matrix  Size:
2L × 2L
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Probability of near-resonant
transitions
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Small parameters

δω<<<<Ω JPerturbation theory:
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Perturbation theory
Exact solution



Numerical results for error-controlled 
quantum computation

Perror<P0

Perror<P0

The total probability of error computed using the perturbation theory
for small and for large number of qubits. Inside the hatched regions the 
probability is less than P0=10-5. 

- improved perturbation theory
- perturbation theory



MRFM single spin resolution 

F
Resonant Spins:

)]}(sin[)],({cos[)( 0
11 ttttBtB ϕωϕω +−+=

ρ

Simulations of MRFM cyclic adiabatic 
inversion (CAI) with phase modulation



Signal-to-noise ratio (classical approach)
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Amplitude of thermal noise
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1|/ZZ| rmsc >Requirement for detection:
For the ultrathin cantilever [T.D.Stowe et al., Appl. Phys. Lett. 71, 288 
(1997)], ∆f =0.4 Hz, ωc/2π=1.7 kHz, Q=6700, kc= 6.5×10-6 N/m: 
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The Hamiltonian for 
MRFM with CAI

Harmonic oscillator Zeeman Interaction Excitation Spin-
Cantilever 
Coupling

secee HHH +++

He – the Hamiltonian of environment
Hce – the Hamiltonian of cantilever-environment interaction
Hce – the Hamiltonian of spin-environment interaction

Effective magnetic field
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Nonlinear interaction important in OSCAR 
when frequency shift is measured

Environment



Classical limit: classical cantilever 
and classical spin magnetization
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• Two interaction parameters
force exerted by spin on cantilever

quantum force

frequency of cantilever

310~ −η for single spin
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is extremely small in Rugar et al. 

Rabi frequency

Parameters from: Rugar et al., Science, 264,1560 (1994)



Schrödinger equation for 
evolution of wave function

• Cantilever is prepared 
in a “quasi-classical” 
state
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Schrödinger cat state 
for the cantilever

• Cantilever is prepared 
in a “quasi-classical” 
state

• Asymmetric 
“Schrödinger cat” 
cantilever state 
develops due to 
coupling to spin

• Two heads of the 
cantilever are 
composed of both spin 
states



Probability distribution of the cantilever 
coordinate for different times

Two heads of the cat oscillate 
periodically in time!

Probability distribution of the 
cantilever coordinate z for ε=400 
and η=0.3. The initial conditions: 
z(0)= 〈z〉 = -20, pz(0)= 〈pz〉 = 0, and 
the average spin is in the direction 
of the effective magnetic field.



Orientation of the average spin in 
each head of the Schrödinger cat

spincantilever Ψ⊗Ψ≠Ψ

• Total wave function is 
entangled

right
spin

right
cantilever

right Ψ⊗Ψ=Ψ

left
spin

left
cantilever

left Ψ⊗Ψ=Ψ

• Wave functions in 
each head are 
disentangled!



Average amplitude of the cantilever

• Although the 
“Schrödinger cat” 
appears,
on average the 
cantilever is excited  
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Suppression of Schrödinger cat state 
in MRFM with CAI
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Rotating frame

Reducing initial angle  

we significantly suppress 

Schrödinger cat

This improves conditions 
for single spin 
measurement using 
MRFM with CAIsingle spin



Suppression of Schrödinger cat 
state in MRFM with CAI
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At t=0 spin is 
oriented 
approximately in 
the direction of 

Probability of 
small head is



Measurement of spin state in MRFM 
with CAI using a cantilever phase

Measurement of the single-spin state 
using the phase of the cantilever 
vibrations. For the dynamics of 〈z(τ)〉
and 〈Sz(τ)〉 the solid line corresponds 
to “big” (classical) peak of the SC 
state, and the dashed line corresponds 
to “small” (quantum) peak of the SC 
state renormalized to the similar 
amplitudes. At the bottom the 
dynamics of the z-component of the 
effective field is shown.



Harmonic oscillator Zeeman Interaction Excitation Spin-
Cantilever 
Coupling

secee HHH +++

Environment

We are calculating a reduced density matrix equation for this 
Hamiltonian and finding the dependences of the dynamics of spin 
detection in MRFM CAI with phase modulation and in OSCAR, on: 

1. Quality factor of the cantilever, Q
2. Diffusion coefficient, D
3. The interaction force with magnetic particle, η
4. The amplitude of the rf field, ε.

Finite-temperature approach to 
MRFM with CAI 



Decoherence time for the cantilever 
(G.P. Berman et al., PRA 61, 032311 2002)
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4 – the amplitude of the thermo-mechanical noise

For an ultrathin cantilever [T.D.Stowe et al., Appl. Phys. Lett. 71, 288 
(1997)], ∆f =0.4 Hz, ωc/2π=1.7 kHz, Q=6700, kc= 6.5×10-6 N/m, 

td /tc≈7×10 -15/ T 2 (tc= Qc /ωc ≈ 0.6 s)
the decoherence time is extremely small

Spin quickly jumps in (or opposite) the direction of the effective 
magnetic field



Dynamical modeling of MRFM –
OSCAR technique
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Method for measuring the 
frequency shift of the cantilever

Nonlinear oscillations of the cantilever are described by the 
equation:
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Dynamics of the spin is given by the equation: 
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The influence of the spin on the dynamics of the cantilever
results in the frequency shift of the cantilever. 

where f is the nonlinear function of z.



The frequency shift of the 
cantilever in OSCAR technique

Dependence of the amplitude a of the driven oscillations of the cantilever on the detuning ρ.  The 
values a and ρ are dimensionless. The value a=1 is the amplitude of driven oscillations of the 
cantilever in the case of exact resonance, when ν=ωc (ρ=0) without spin. 

ρ=(ν-ωc)/ωc
ν- frequency of external mechanical
force acting on the cantilever

ωc - frequency of small oscillations 
of the cantilever

Frequency
shift

Frequency
shift

no spin with spin and different initial conditions

For reasonable parameters and 
for ωc /2π=105 Hz the frequency 
shift per one magneton is ≈ 6 Hz.



Cyclic adiabatic inversion 
conditions in OSCAR technique  

In order to make the influence of the spin on the cantilever strong enough the average 
dynamics of the spin should be coherent with the dynamics of the cantilever. To provide this, 
the amplitude of the time-dependent magnetic field, B⊥ , must be large, ε =γ B⊥ /ωc >>1, 
where γ is the gyromagnetic ratio. Mx, My, and Mz are the components of the spin measured 
in units of Bohr magneton. 

ε=28ε=280

- Numerical simulations
- Analytic solution for averaged dynamics



Dynamical theory of MRFM-
OSCAR with many spins

We use discrete equations for magnetic moments in the resonant slice
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The force acting on the cantilever:
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